三对角行列式

时间:2024-01-23 06:31:15编辑:小王

线性代数三对角行列式的计算方法如下:

用行列式的归纳法。

得到An=aA(n-1)+bA(n-2)

然后通过数列的方法接出An即可。

注:上述的Ai指的是行列式中含有的第i阶子行列式。

举例如下:求下列行列式的值。

按第一行展开

Dn=aD(n-1) - bcD(n-2).

递归关系的特征方程为 x^2-ax+bc=0.

记 u=a^2-4bc.

当u=0时, x^2-ax+bc=0 的根为 α=a/2.

Dn=c1α^n + c2nα^n.

代入 D1=a, D2=a^2-bc 得 C1=C2=1

所以 Dn=(n+1)(a/2)^n.

当u≠0时, x^2-ax+bc=0 的根为 α=(a+√u)/2, β=(a-√u)/2.

所以 Dn=c1α^n + c2β^n.

代入 D1=a, D2=a^2-bc 解得c1,c2

即有 Dn=(a+√u)^(n+1)-(a-√u)^(n+1)

上一篇:注册机是什么

下一篇:湖州到杭州