向量夹角范围

时间:2023-10-23 19:17:24编辑:小王

两个向量的夹角

夹角为α=arccos(∑(xiyi)/sqrt((∑(xixi)∑(yiyi)))。即:cos夹角=两个向量的内积/向量的模(“长度”)的乘积。另:两个向量应当是同一个空间里的,也就是m和n应该相等。

例如:

平面向量夹角公式:cos=(ab的内积)/(|a||b|)

(1)上部分:a与b的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2

(2)下部分:是a与b的模的乘积:设a=(x1,y1),b=(x2,y2),则(|a||b|)=根号下(x1平方+y1平方)*根号下(x2平方+y2平方)

正切公式用tan表示,余角公式用cos表示。正切公式(直线的斜率公式):k=(y2-y1)/(x2-x1),余弦公式(直线的斜率公式):k=(y2-y1)/(x2-x1)。

当两个角的度数之和等于180°,即一个平角,这两个角便是互补角。若两个相邻的角互为余角,两个非共用边会形成一直线。不过两个不相邻的角也可以是补角,例如平行四边形中,任两邻角为互补角。圆内接四边形的对角也是互补角。

若点P为圆O外的一点,而过点P作圆的切线,切点分别在点T和点Q,则∠TPQ和∠TOQ为互补角。

两互补角的正弦相等,其余弦及正切(若有定义义)大小相等,但符号异号。

在欧几里得几何中,三角形两角的和为第三角的补角。

上一篇:北京中轴线

下一篇:氧气用途